37 research outputs found

    Intent Models for Contextualising and Diversifying Query Suggestions

    Full text link
    The query suggestion or auto-completion mechanisms help users to type less while interacting with a search engine. A basic approach that ranks suggestions according to their frequency in the query logs is suboptimal. Firstly, many candidate queries with the same prefix can be removed as redundant. Secondly, the suggestions can also be personalised based on the user's context. These two directions to improve the aforementioned mechanisms' quality can be in opposition: while the latter aims to promote suggestions that address search intents that a user is likely to have, the former aims to diversify the suggestions to cover as many intents as possible. We introduce a contextualisation framework that utilises a short-term context using the user's behaviour within the current search session, such as the previous query, the documents examined, and the candidate query suggestions that the user has discarded. This short-term context is used to contextualise and diversify the ranking of query suggestions, by modelling the user's information need as a mixture of intent-specific user models. The evaluation is performed offline on a set of approximately 1.0M test user sessions. Our results suggest that the proposed approach significantly improves query suggestions compared to the baseline approach.Comment: A short version of this paper was presented at CIKM 201

    Generalized Team Draft Interleaving

    Get PDF
    Interleaving is an online evaluation method that compares two ranking functions by mixing their results and interpret- ing the users' click feedback. An important property of an interleaving method is its sensitivity, i.e. the ability to obtain reliable comparison outcomes with few user interac- tions. Several methods have been proposed so far to im- prove interleaving sensitivity, which can be roughly divided into two areas: (a) methods that optimize the credit assign- ment function (how the click feedback is interpreted), and (b) methods that achieve higher sensitivity by controlling the interleaving policy (how often a particular interleaved result page is shown). In this paper, we propose an interleaving framework that generalizes the previously studied interleaving methods in two aspects. First, it achieves a higher sensitivity by per- forming a joint data-driven optimization of the credit as- signment function and the interleaving policy. Second, we formulate the framework to be general w.r.t. the search do- main where the interleaving experiment is deployed, so that it can be applied in domains with grid-based presentation, such as image search. In order to simplify the optimization, we additionally introduce a stratifed estimate of the exper- iment outcome. This stratifcation is also useful on its own, as it reduces the variance of the outcome and thus increases the interleaving sensitivity. We perform an extensive experimental study using large- scale document and image search datasets obtained from a commercial search engine. The experiments show that our proposed framework achieves marked improvements in sensitivity over efective baselines on both datasets

    Emergent Language Generalization and Acquisition Speed are not tied to Compositionality

    Full text link
    Studies of discrete languages emerging when neural agents communicate to solve a joint task often look for evidence of compositional structure. This stems for the expectation that such a structure would allow languages to be acquired faster by the agents and enable them to generalize better. We argue that these beneficial properties are only loosely connected to compositionality. In two experiments, we demonstrate that, depending on the task, non-compositional languages might show equal, or better, generalization performance and acquisition speed than compositional ones. Further research in the area should be clearer about what benefits are expected from compositionality, and how the latter would lead to them

    Long-term Effects of Temperature Variations on Economic Growth: A Machine Learning Approach

    Full text link
    This study investigates the long-term effects of temperature variations on economic growth using a data-driven approach. Leveraging machine learning techniques, we analyze global land surface temperature data from Berkeley Earth and economic indicators, including GDP and population data, from the World Bank. Our analysis reveals a significant relationship between average temperature and GDP growth, suggesting that climate variations can substantially impact economic performance. This research underscores the importance of incorporating climate factors into economic planning and policymaking, and it demonstrates the utility of machine learning in uncovering complex relationships in climate-economy studies

    Optimised Scheduling of Online Experiments

    Get PDF
    ABSTRACT Modern search engines increasingly rely on online evaluation methods such as A/B tests and interleaving. These online evaluation methods make use of interactions by the search engine's users to test various changes in the search engine. However, since the number of the user sessions per unit of time is limited, the number of simultaneously running on-line evaluation experiments is bounded. In an extreme case, it might be impossible to deploy all experiments since they arrive faster than are proccessed. Consequently, it is very important to efficiently use the limited resource of the user's interactions. In this paper, we formulate the novel problem of schedule optimisation for the queue of the online experiments: given a limited number of the user interactions available for experimentation, we want to re-order the queue so that the number of successful experiments is maximised. In order to build a schedule optimisation algorithm, we start by formulating a model of an online experimentation pipeline. Next, we propose to reduce the task of finding the optimal schedule to a learning-to-rank problem, where we require the most promising experiments to be ranked first in the schedule. To evaluate the proposed approach, we perform an evaluation study using two datasets containing 82 interleaving and 35 A/B test experiments, performed by a commercial search engine. We measure the quality of a schedule as the number of successful experiments executed under limited user interactions. Our proposed schedulers obtain improvements of up to 342% compared to the unoptimised baseline schedule on the dataset of interleaving experiments and up to 43% on the dataset of A/B tests

    Data Augmenting Contrastive Learning of Speech Representations in the Time Domain

    Get PDF
    Contrastive Predictive Coding (CPC), based on predicting future segments of speech based on past segments is emerging as a powerful algorithm for representation learning of speech signal. However, it still under-performs other methods on unsupervised evaluation benchmarks. Here, we introduce WavAugment, a time-domain data augmentation library and find that applying augmentation in the past is generally more efficient and yields better performances than other methods. We find that a combination of pitch modification, additive noise and reverberation substantially increase the performance of CPC (relative improvement of 18-22%), beating the reference Libri-light results with 600 times less data. Using an out-of-domain dataset, time-domain data augmentation can push CPC to be on par with the state of the art on the Zero Speech Benchmark 2017. We also show that time-domain data augmentation consistently improves downstream limited-supervision phoneme classification tasks by a factor of 12-15% relative

    Speech Resynthesis from Discrete Disentangled Self-Supervised Representations

    Get PDF
    We propose using self-supervised discrete representations for the task of speech resynthesis. To generate disentangled representation, we separately extract low-bitrate representations for speech content, prosodic information, and speaker identity. This allows to synthesize speech in a controllable manner. We analyze various state-of-the-art, self-supervised representation learning methods and shed light on the advantages of each method while considering reconstruction quality and disentanglement properties. Specifically, we evaluate the F0 reconstruction, speaker identification performance (for both resynthesis and voice conversion), recordings' intelligibility, and overall quality using subjective human evaluation. Lastly, we demonstrate how these representations can be used for an ultra-lightweight speech codec. Using the obtained representations, we can get to a rate of 365 bits per second while providing better speech quality than the baseline methods. Audio samples can be found under the following link: speechbot.github.io/resynthesis.Comment: In Proceedings of Interspeech 202
    corecore